Fuzzy Fredholm integro-differential equations with artificial neural networks
نویسندگان
چکیده
منابع مشابه
Fuzzy Fredholm integro-differential equations with artificial neural networks
In this paper, we use parametric form of fuzzy number, then feed-forward neural network is presented for obtaining approximate solution for fuzzy Fredholm integro-differential equation of the second kind. This paper presents a method based on neural networks and Newton-Cotes methods with positive coefficient. The ability of neural networks in function approximation is our main objective. The pr...
متن کاملSolving Non-linear Fredholm Integro-differential Equations
In this paper, Semi-orthogonal (SO) B-spline scaling functions and wavelets and their dual functions are presented to approximate the solutions of linear and non-linear second order Fredholm integro-differential equations. The B-spline scaling functions and wavelets, their properties and the operational matrices of derivative for this functions are presented to reduce the solution of linear and...
متن کاملNumerical solution of fuzzy linear Fredholm integro-differential equation by \fuzzy neural network
In this paper, a novel hybrid method based on learning algorithmof fuzzy neural network and Newton-Cotesmethods with positive coefficient for the solution of linear Fredholm integro-differential equation of the second kindwith fuzzy initial value is presented. Here neural network isconsidered as a part of large field called neural computing orsoft computing. We propose alearning algorithm from ...
متن کاملUSING PG ELEMENTS FOR SOLVING FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS
In this paper, we use Petrov-Galerkin elements such as continuous and discontinuous Lagrange-type k-0 elements and Hermite-type 3-1 elements to find an approximate solution for linear Fredholm integro-differential equations on $[0,1]$. Also we show the efficiency of this method by some numerical examples
متن کاملSPLINE COLLOCATION FOR FREDHOLM AND VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS
A collocation procedure is developed for the linear and nonlinear Fredholm and Volterraintegro-differential equations, using the globally defined B-spline and auxiliary basis functions.The solutionis collocated by cubic B-spline and the integrand is approximated by the Newton-Cotes formula.The error analysis of proposed numerical method is studied theoretically. Numerical results are given toil...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Numerical Analysis
سال: 2012
ISSN: 2193-4215
DOI: 10.5899/2012/cna-00128